1}{2}\mathbf{r}+\frac{1}{2}abla\phi \cdot abla\phi - v(\phi)ight)]
其中,( v )表示该维度之门的作用量,(\sqrt{g})是四维时空的度规平方根,(\mathbf{r})是四维时空的标量曲率,(abla\phi )是六维空间的标量场梯度,而( v(\phi))是与标量场相互作用的势能项。
在这个六维空间中,一条曲线( c )被定义为连接维度之门两侧并且满足以下条件的路径。路径( c )的长度为( l ),且它的作用量最小。考虑到在四维空间中度规为(\sqrt{g}= 1 ),标量场为(\phi =\phi_0 )。
请求解:在六维空间中作用量最小的曲线( c )。
提示:可以用超螺旋空间的相关性理论进行求解,其最小作用量应对于路径(\mathbf{x}(t))满足的运动方程。
设计好问题之后,乔泽便直接让豆豆给发了出去。
为了保证大家都能看懂,题干部分专门用了中、英双语。
尤其是针对一些新数学的特有名词,乔泽还专门进行了解释,很贴心,且不需要对方表示感谢。
只能说大家都在为学术进步做着贡献。
请访问最新地址